

Astrocast SA

This is a confidential document

Last updated: 8 December 2020

ASTRONODE PILOT ASSET API USER GUIDE

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 1 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

TABLE OF CONTENT

Table of Content 1

1 Definitions 2

1.1 Applicable Documents 2

1.2 Acronyms and Abbreviations 2

2 Icons 3

3 Introduction 4

3.1 Satellite vs. Wi-Fi Development Kits 4

4 Conventions, Data Format 5

4.1 Unsigned integer values format convention 5

4.2 Bit/octet numbering convention 5

4.3 Terms and descriptions 6

5 General protocol description 7

5.1 UART configuration 7

5.2 Timing and Timeouts 7

5.3 Message structure 7

5.4 ID list 8

5.5 Configuration 9

5.6 Telemetry 10

5.7 Acknowledgment events 10

5.8 Error management 12

6 Detailed protocol description 14

6.1 Astronode Satellite Dev-Kit registers 14

6.1.1 Read registers 14

6.1.2 Write configuration 16

6.2 Wi-Fi Dev Kit registers (Wi-Fi Dev Kit only) 18

6.3 Enqueue telemetry payload 20

6.4 Dequeue telemetry payload 22

6.5 Geolocation write command 23

6.6 Downlink event management 25

6.6.1 Receiving notification 25

6.7 Reading satellite acknowledgement 27

7 Annex A: CRC 29

7.1 Software implementation 29

7.2 Verification of compliance 31

8 Disclaimer 32

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 2 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

1 DEFINITIONS

1.1 APPLICABLE DOCUMENTS

[AD1] Pilot Wi-Fi Development Kit User Guide

[AD2] Astronode Pilot Satellite Development Kit User Guide

[AD3] Data Management Platform Introduction

[AD4] Pilot Program Welcome

1.2 ACRONYMS AND ABBREVIATIONS

AES. Advanced Encryption Standard

API. Application Programming Interface

DL. Down Link: Satellite to the Development Kit, RF link

DM. Data Management

HW. Hardware

IoT. Internet of Things

M2M. Machine to Machine

RF. Radio Frequency

SW. Software

MCU. Microcontroller Unit

TC. Telecommand: incoming command from satellite Down Link to Development Kit

TM. Telemetry: outgoing payload from the asset, Dev. Kit to the satellite via Up Link

UL. Up Link: Development Kit to Satellite. RF link

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 3 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

2 ICONS

Within this document, the following icons may help the reader on some aspects:

 Important to read and remember

 Insight into the NUCLEO64 Example_Asset driver

Additional details for a given function

A system performance constraint

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 4 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

3 INTRODUCTION

This document describes how to use the Astronode Pilot Asset API on both Precursor Wi-

Fi and Satellite Development Kits.

3.1 SATELLITE VS. WI-FI DEVELOPMENT KITS

As described in each of the Satellite and Wi-Fi Development Kit User Guides ([AD1],

[AD2]), the kits are designed to be interchangeable to ease development. The protocol

described in this document is almost identical for each kit. There are two differences to

highlight:

1. The read configuration message will return a different product ID for the two kits,

allowing them to be distinguished.

2. The Satellite Development Kit will answer with an error if the Wi-Fi configuration

command is sent to it.

When integrating the protocol into a system, be aware of the significant performance

differences in the latency of the Wi-Fi and Satellite development kits. On Wi-Fi, expect to

receive uplink acknowledgments in seconds. With the satellites, expect to wait much

longer. Refer to [AD4] for more information on the service levels.

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 5 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

4 CONVENTIONS, DATA FORMAT

4.1 UNSIGNED INTEGER VALUES FORMAT CONVENTION

Hexadecimal values are always prefixed by the two characters "0x". Example: 0x8000 is

equal to the decimal value 32768.

4.2 BIT/OCTET NUMBERING CONVENTION

The first bit in the field to be transmitted (i.e. the most right-justified bit when drawing a

figure) is defined to be "Bit 0"; the following bit is called "Bit 1" and so on up to "Bit N-1".

Bit 0 is the Least Significant bit (LSb)

When the field is used to express a binary value (such as an integer of more than one

byte), the Least Significant Byte (LSB) shall be the first transmitted byte, i.e. in little-endian

format.

Example for 0x12345678:

Byte 0 (LSB) Byte1 Byte 2 Byte 3 (MSB)

0x78 0x56 0x34 0x12

An octet (i.e. a byte) is 8-bits length.

A short word is 16-bits length (i.e. 2 octets).

A word is 32-bits length (i.e. 4 octets).

A long word is 64-bits length (i.e. 8 octets).

Numbering of octets in a field is done from LSB as Octet 0 to MSB as Octet in an N-octet

field.

N-Bit Data Field

Bit N-1 Bit 0

LSb

N-octets Data Field

Least Significant Octet

Octet N-1 Octet 1 Octet 0

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 6 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

4.3 TERMS AND DESCRIPTIONS

Term Description

Request The term used in the Asset - Development Kit protocol for write

or read operation from the Asset to the Development Kit.

Answer When the Asset sends a Request (above), the Development Kit

will reply with an Answer, providing the status of the request

operation. The direction is from the Development Kit to the

Asset.

Notification The term used in the Asset - Development Kit protocol for the

Development Kit spontaneously notifying the Asset via the DLN

pin.

Message Command or response identifier

Uint8 8-bit unsigned integer (1 byte)

Uint16 16-bit unsigned integer (2 bytes)

Byte[N] An array of N bytes

Timeout The Asset API has 2 timeouts: inter-byte timeout within a

message; and another timeout between commands and

responses. See section 5.2.

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 7 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

5 GENERAL PROTOCOL DESCRIPTION

5.1 UART CONFIGURATION

The following settings shall be used for the UART:

- 8 data bits

- 1 start bit

- 1 stop bit

- No parity

- No hardware flow control

- 9600 Baud rate

5.2 TIMING AND TIMEOUTS

All answers to requests can be expected to be received within 100ms after reception of

the last byte of the request. Past that delay, the asset can consider that a transmission

error has occurred, and the asset should retry.

There should be minimum of 10ms delay between an answer (development kit to asset)

and the next request (asset to development kit). i.e. After receiving an answer, the asset

should delay 10ms before sending the next request.

A 100ms inter-byte timeout is implemented to recover from incomplete requests. Within

a single command, bytes should not be spaced by more than 100ms. With more than

100ms between bytes, the development kit will discard the in-progress receive operation

and wait for the next start byte.

5.3 MESSAGE STRUCTURE

All messages between the Satellite Development Kit and Asset will have the following

fields:

Start Byte Message

ID

Length Message Parameters CRC-16-

CCITT*

0x7F 1 byte 2 bytes variable 2 bytes

 Data used for CRC computation

 Variable size determined by Length

Each command is acknowledged by an answer message.

Requests and answers shall comply with the above message format.

See the following table for details of the message IDs.

The CRC is explained in Annex A.

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 8 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

5.4 ID LIST

List of Request IDs, corresponding Answer IDs, and their descriptions:

Asset à Terminal Terminal à Asset

Request Answer

ID Name Description ID Name Description

0x05 CFG_WR Writes configuration to

Development Kit

volatile memory

0x85 CFG_WA Answers last

configuration write

operation with status

0x06 WIF_WR Writes Wi-Fi settings

in Development Kit

volatile memory (Wi-Fi

only)

0x86 WIF_WA Answers last Wi-Fi

settings write

operation with status

(Wi-Fi only)

0x15 CFG_RR Reads configuration

from Development Kit

volatile memory

0x95 CFG_RA Answers last

configuration read

operation with value

0x25 PLD_ER Enqueues asset

payload in

Development Kit

volatile memory

0xA5 PLD_EA Answers last payload

enqueue operation

with status

0x26 PLD_DR Dequeues asset

payload from

Development Kit

volatile memory

0xA6 PLD_DA Answers last payload

dequeue operation

with status

0x35 GEO_WR Writes geolocation

longitude and latitude

in Development Kit

volatile memory

0xB5 GEO_WA Answers last

geolocation write

operation with status

0x45 SAK_RR Reads Satellite

Acknowledgment

0xC5 SAK_RA Answers with Satellite

Acknowledgment

information

0x46 SAK_CR Confirms to the

Development Kit that

Satellite

Acknowledgment was

properly decoded and

can be deleted.

0xC6

SAK_CA Answers last SAK_CR

confirmation

0x65 DLN_RR Reads DL event

register

0xE5 DLN_RA Answer indicates

which Downlink

Events are currently

pending

 0xFF ERROR Answers a request

reporting an error.

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 9 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

Naming conventions for the table above:

• R suffix (***_*R) refers to Request.

• A suffix (***_*A) refers to Answer.

• The letter R/A is usually the action related to the command:

o ***_W* - Write,

o ***_R* - Read,

o ***_E* - Enqueue,

o ***_D* - Dequeue,

o ***_C* - Confirm.

• The 3-letter prefix describes the operation further:

o CFG_** - Configuration,

o WIF_** - Wi-Fi,

o PLD_** - Payload,

o GEO_** - Geolocation,

o SAK_** - Satellite Acknowledgement,

o DLN_** - Downlink Notification.

Put this all together for something like DLN_RR as Downlink Notification Read Request,

or DLN_RA as Downlink Notification Read Answer.

The following sections discuss the usage of these commands. Section 6 provides a

detailed description of the protocol commands and responses.

5.5 CONFIGURATION

Sending TM data and receiving acknowledgments can be done directly using default

factory-settings transmission parameters. To use non-standard parameters, custom

configuring is done the following way, using CFG_WR / CFG_WA, CFG_RR / CFG_RA,

GEO_WR / GEO_WA:

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 10 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

5.6 TELEMETRY

Sending TM payload is done the following way, using PLD_EQ and PLD_EA IDs:

Up to 44B per message can be queued, a maximum 8 messages at a given time.

Each message can be tagged with a TM counter, to recognize the corresponding

acknowledgment later.

It is currently not possible to wipe the buffer in a single command. However, this will be a

feature that will be available in our future terminal. The current workaround is to use the

payload dequeue multiple times in a row.

5.7 ACKNOWLEDGMENT EVENTS

The terminal will notify the asset of events setting the DLN pin high. The nature of the

event can then be checked using the DLN_RR command. Currently only TM payload

successfully sent to the satellite are notified. Notifications can be enabled or disabled

using the configuration register (see section 6.1).

Alternatively of monitoring the status of the DLN pin, the events can be checked by polling

the terminal with the DLN_RR command.

In case of TM payload acknowledgement, the asset can read which TM payload was

acknowledge using the SAK_RR command, and then clear the acknowledgement using

a SAK_CR. As shown in the diagram below. Note that this is not an end-to-end

acknowledgment but only satellite acknowledgment for Satellite Dev Kit and server

acknowledgment for Wi-Fi Dev Kit.

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 11 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

Unless the end-user does not care about getting acknowledgments of messages being

received by the satellite, the TM payload acknowledged by satellite bit should remain set

to true (default value).

 Occasionally, this acknowledgement may only be reported during the second next

satellite passage; this time delay will be up to 24 hours for the demo and 15 minutes with

the full constellation. for more information about performance.

Refer to downlink event management and read the DL information paragraphs for details.

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 12 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

5.8 ERROR MANAGEMENT

In case of error, Response can also be (0xFF) and will comply with the following

description:

Message

structure

Start ID Length (Bytes) Parameters Checksum

0x7F 0xFF 0x0002 See below LSB MSB

Parameters:

Byte offset Format Name Description

0

Table 1 - Error code list

Error

code

Error type Name Description

0x0001 COMM CRC_ERROR Discrepancy between provided CRC

and expected CRC.

0x0011 COMM WRONG_LENGTH Field length of the message is invalid

for the given command ID.

Notes:

• In case of frame too long, the

terminal can send this error

code before receiving the

entire frame.

• This error code is also used in

response of a PLD_ER if the

payload sent is too long (44

bytes without geolocation, 36

with)

0x0021 COMM INVALID_ID Invalid command ID used.

0x0601 WIF_ER FORMAT_NOT_VALID At least one of the fields (SSID,

password, access token) is not

composed of exclusively printable

standard ASCII characters (0x20 to

0x7E) or is not null terminated.

0x2501 PLD_ER BUFFER_FULL Failed to queue the payload because

the sending queue is already full.

0x2511 PLD_ER DUPLICATE_COUNTER Failed to queue the payload because

a message with the same TM counter

is already present in the buffer

0x2601 PLD_DR BUFFER_EMPTY Failed to dequeue a message from

the buffer because the buffer is empty

0x3501 GEO_WR INVALID_POS Failed to update the geolocation

information. Latitude and longitude

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 13 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

fields must in the range [-90,90]

degrees and [-180,180] degrees,

respectively.

0x4501 SAK_RR NO_ACK No satellite acknowledgement

available for any message.

0x4601 SAK_CR NO_CLEAR No message to clear or it was already

cleared.

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 14 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

6 DETAILED PROTOCOL DESCRIPTION

6.1 ASTRONODE SATELLITE DEV-KIT REGISTERS

The Astronode Pilot Satellite Development Kit comprises 6x 8bit registers:

• A Product ID

• A HW revision byte (read-only)

• 3 FW version bytes (read-only)

• A Configuration Register (R/W)

There is no memory context saving, meaning in case of reboot, the Development Kit will

reset to its default values (see next).

 This configuration function is ensured by astronode_devkit_initialize () in the driver.

Development Kit Configuration Register allows you to specify the following:

• The Development Kit provides the possibility to tag all your messages with the GPS

coordinates of the asset, simply by specify latitude and longitude once per test

session with an appropriate command. Adding this geolocation data is only

possible when Add geolocation corresponding bit is set to true. It is false i.e.

disabled by default at each start up. If used the maximum payload size is reduced

by eight bytes.

Refer to geolocation write command paragraphs for details.

• If the message acknowledgment from satellite is going to be reported to the asset

or not.

6.1.1 READ REGISTERS

HW revision, FW version bytes and the Configuration Register can be read for status

using the CFG_RR command below:

Message

structure

Start ID Length (Bytes) Parameters Checksum

0x7F CFG_RR=0x15 0x0000 none LSB MSB

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 15 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

CFG_RA response is defined as:

 Configuration register value Bitfield:

*since messages are encrypted just after queuing: if geolocation set before queuing only

will be encapsulated. On the contrary acknowledgment bit applies immediately to all

queued message(s).

Example:

Asset sends a CFG_RR command.

Start Message ID Length CRC

0x7F 0x15 0x0000 0xBAC8

Message

structure

Start ID Length (Bytes) Parameters Checksum

0x7F CFG_RA=0x95 0x0006 See below LSB MSB

Parameters:

Byte offset Format Name Description

0 Uint8 Product ID (read only) Wi-Fi (0) or satellite (1)

1 Uint8 Hardware revision (read only) Terminal electronics

version

2 Uint8 Firmware major version (read

only)

Digit used when new

features added or loss of

compatibility

3 Uint8 Firmware minor version (read

only)

Digit used only for fixing

bugs or minor feature

improvement

4 Uint8 Firmware revision version (read

only)

Digit used only for fixing

bugs or minor feature

improvement

5 Uint8 Configuration Register (R/W,

write described in 6.1.2)

Read protocol settings

(not persisted in flash

memory once received in

the terminal SRAM)

7 6 5 4 3 2 1 0

0 0 0 0 0 0 Add Geolocation

(next payloads

only*)

TM Payload Acknowledged by

Satellite (immediate effect*)

 Default=0 Default=1

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 16 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

The Development Kit will use CRC incoming bytes to verify data integrity.

Considering the example above, the Development Kit should reply with a CFG_RA:

Start Message ID Length Parameters CRC

0x7F 0x95 0x0006 0x01 0x01 0x00 0x01 0x00 0x01 0xBBA2**

The asset may use the information to check that the precedent configuration register write

command was done properly. It may also check CRC incoming bytes from the response

to verify data integrity.

** As defined earlier in 4.2 conventions and 5.2 message structure, CRC computation

shall be applied to 0x7F 0x95 0x06 0x00 0x01 0x01 0x00 0x01 0x00 0x01in that exact

strict order.

6.1.2 WRITE CONFIGURATION

In case the default parameters are not suitable for the end-user, it is possible to change

them by using the Configuration Register CFG_WR command, using the following

structure below. Note again that configuration is lost in case of power off/on cycle.

Message

structure

Start ID Length (Bytes) Parameters Checksum

0x7F CFG_WR=0x05 0x0001 see below LSB MSB

Parameters:

Byte

offset

Format Name Description

0 Uint8 Development Kit

Configuration Register

Configurable protocol parameters

Configuration register value Bitfield (reminder):

The CFG_WA response is defined as follows:

Message

structure

Start ID Length (Bytes) Parameters Checksum

0x7F CFG_WA=0x85 0x0000 none LSB MSB

Example:

The asset sends a CFG_WR command.

Start Message ID Length Parameters CRC

0x7F 0x05 0x0001 0x03 0xD265

Development Kit will use CRC incoming bytes to verify data integrity. Considering the

example above, the Development Kit should reply with a CFG_WA:

7 6 5 4 3 2 1 0

0 0 0 0 0 0 Add geolocation TM Payload Acknowledged by Satellite

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 17 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

Start Message ID Length CRC

0x7F 0x85 0x0000 0xC2F1

The Development Kit will then use new custom transmission parameters.

The asset may use check CRC incoming bytes from the response to verify data integrity.

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 18 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

6.2 WI-FI DEV KIT REGISTERS (WI-FI DEV KIT ONLY)

A wireless connection of the Wi-Fi Development Kit with the Astrocast DM can be

achieved by configuring the following parameters:

• WLAN_SSID = your company network SSID name. See the note below on

acceptable characters.

• WLAN_KEY = corresponding key (password) of your SSID. See the note below on

acceptable characters.

• AUTH_TOKEN = 96 Byte access token generated on the Astrocast Portal.

Message

structure

Start ID Length

(Bytes)

Parameters Checksum

0x7F WIF_WR=0x06 194 see below LSB MSB

Parameters:

Byte offset Format Name Description

0 Byte[33] WLAN_SSID LAN SSID

(maximum 32

characters plus null

termination; not

persisted in flash

memory)

33 Byte[64] WLAN_KEY Corresponding key

of the SSID

(maximum 63

characters plus null

termination; not

persisted in flash

memory)

97 Byte[97] AUTH_TOKEN API access token for

Wi-Fi module (fixed

size 96 characters

plus null termination;

not persisted in flash

memory)

The CFG_WA response is defined as follows:

Message

structure

Start ID Length (Bytes) Parameters Checksum

0x7F WIF_WA=0x86 0x0000 none LSB MSB

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 19 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

Note on SSID and Key characters:

The IEEE 802.11 Wi-Fi specification allows the SSID and key to include non-printable

characters and null characters (0). The Wi-Fi development kit intentionally deviates from

this, and only characters in the ASCII range 0x20 to 0x7E should be used, terminated

with a null character. This includes 0-9, a-z, A-Z and many symbols. This development kit

will not work with SSIDs or keys that use characters outside of this range. If this is a

problem, please contact support.

Example:

The Asset sends a WIF_WR command.

Start Message ID Length Parameters CRC

0x7F 0x06 194 0x02 0xFF 0xFF 0x02 0xEE 0xEE 0x… custom

The Dev Kit will use CRC incoming bytes to verify data integrity.

Considering the example above, the Dev Kit should reply with a WIF_WA:

Start Message ID Length CRC

0x7F 0x86 0x0000 0x9BA1

The Dev Kit will then use new custom transmission parameters.

The Asset may use check CRC incoming bytes from the response to verify data integrity.

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 20 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

6.3 ENQUEUE TELEMETRY PAYLOAD

 This function is ensured by astronode_send_message() in the driver.

Directly after power on (default configuration), or once the Development Kit has been

configured by the asset, a PLD_ER command can be used to transfer one or multiple

set(s) of TM payload and as many times as necessary.

Message

structure

Start ID Length (Bytes) Parameters Checksum

0x7F PLD_ER=0x25 2+N (see below) See below LSB MSB

Parameters:

Byte

offset

Format Name Description

0 Uint16 TM Counter TM payload identifier chosen by the asset. This

counter will be reused to tag the corresponding

acknowledgments from the satellites.

The TM counter needs to be unique and nonzero.

See description below for details

2 Byte [] TM Payload

bytes

The N bytes of the payload to send. N must be

<= 44 bytes if geolocation data is not activated,

<= 36 bytes if geolocation is activated.

 Notes:

If the payload length is above the specified value (N>44 bytes if geolocation data is not

activated and N>36 bytes if geolocation is activated), the terminal will return a

COMM_WRONG_LENGTH error and the message will not be queued.

For the Beta demonstration, a maximum of 8 messages can be queued in the terminal.

The messages queued are lost upon terminal power-cycle or reset. If 8 messages are

already queued in the terminal, a PLD_ER will return a PLD_ER_BUFFER_FULL error and

the message will not be queued. There exist two options to free space in the queue:

- If a message was successfully sent to the satellite, the asset can clear the

message acknowledgment using a SAK_CR (see section 6.6 and 6.7)

- The asset can decide to dequeue the oldest message in the queue, even if it was

not sent to the satellite, using the PLD_DR command (see section 6.4)

The TM counter is used to unambiguously refer to a specific TM payload in the PLD_EA

response, SAK_RR and PLD_DR. To avoid any ambiguity, if the TM counter in the

PLD_ER is identical to the one of a message already present in the buffer, the terminal

will respond with a PLD_ER_DUPLICATE_COUNTER error and the new message will not

be queued.

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 21 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

If PLD_DR is successful, the PLD_EA response is defined as:

Message

structure

Start ID Length (Bytes) Parameters Checksum

0x7F PLD_EA=0xA5 0x0002 See below LSB MSB

Parameters:

Byte offset Format Name Description

0 Uint16 TM Counter Refers to value provided in PLD WR

Example:

The asset TM payload can be sent using the PLD_EQ command:

Start Message ID Length Parameters CRC

0x7F 0x25 0x0004 0x01 0x00 0xBA 0xDC 0xC483

The Development Kit will answer with a PLD_EA response:

Start Message ID Length Parameters CRC

0x7F 0xA5 0x0002 0x01 0x00 0x59E5

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 22 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

6.4 DEQUEUE TELEMETRY PAYLOAD

The PLD_DR command is used to dequeue the oldest message present in the terminal’s

message buffer, even if it was not sent to the satellite. If the message buffer is empty, the

terminal will respond to PLD_DR with a PLD_DR_BUFFER_EMPTY error.

Note: To clear the entirety of TM payload, the PLD_DR request can be sent to the terminal

until a PLD_DR_BUFFER_EMPTY error is received.

Message

structure

Start ID Length (Bytes) Parameters Checksum

0x7F PLD_DR=0x26 0 None LSB MSB

If PLD_DR is successful, the PLD_DA response is defined as:

Message

structure

Start ID Length (Bytes) Parameters Checksum

0x7F PLD_DA=0xA6 0x0002 See below LSB MSB

Parameters:

Byte offset Format Name Description

0 Uint16 TM Counter TM counter of the message

dequeued. Refers to value

provided in PLD_ER when the

message was queued

Example:

The oldest asset TM payload can be dequeued using the PLD_EQ command:

Start Message

ID

Length Parameters CRC

0x7F 0x26 0x0000 none 0x263D

The Development Kit will answer with a PLD_EA response:

Start Message

ID

Length Parameters CRC

0x7F 0xA6 0x0002 0x01 0x00 0xF9CD

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 23 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

6.5 GEOLOCATION WRITE COMMAND

This geolocation function is ensured by astronode_set_gnss_coordinates () in the

driver, using asset_set_longitude () and asset_set_latitude () double to decimal precision

conversion functions.

Latitude and longitude values are encapsulated in the M2M message if the Add

Geolocation bit has been set to 1. Therefore, these coordinates must be specified before

enabling that bit, by using the command described here below. If not specified, then

default coordinates (0,0) would be used.

Note: the end user is free to encapsulate his geolocation data within the payload, without

having to use this specific command.

Longitude and latitude are set using the following command:

Message

structure

Start ID Length (Bytes) Parameters Checksum

0x7F GEO_WR=0x35 0x0008 See below LSB MSB

Parameters:

Byte

offset

Format Name Description

0 Int32 Longitude Longitude in 1/10 of µ° (i.e. ° multiplied by

1E7)

e.g. 123456780 = 12.345678°

Must be in the range -180° to 180°

(not persisted in flash memory once

received in the terminal SRAM).

Initial value at each start-up is 0.

4 Int32 Latitude Latitude in 1/10 of µ° (i.e. ° multiplied by

1E7)

e.g. 123456780 = 12.345678°

Must be in the range -90° to 90°

(not persisted in flash memory once

received in the terminal SRAM).

Initial value at each start-up is 0.

If an invalid longitude or latitude are sent, both values are discarded and a INVALID_POS

error is returned.

The GEO_WA response is defined as:

Message

structure

Start ID Length (Bytes) Parameters Checksum

0x7F GEO_WA=0xB5 0x0000 none LSB MSB

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 24 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

Example:

The assets present longitude and latitude values can be sent using GEO_WR command:

Start Message ID Length Parameters CRC

0x7F 0x35 0x0008 0x98 0xBA 0xDC 0xFE 0x98 0xBA 0xDC 0xFE* 0x8B2D

*see driver for float to compressed values examples.

The Development Kit will answer with an GEO_WA response:

Start Message ID Length CRC

0x7F 0xB5 0x0000 0x0754

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 25 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

6.6 DOWNLINK EVENT MANAGEMENT

 This downlink event management function is ensured for the acknowledgment by

astronode_get_aknowledgments () in the Example Asset driver. Acknowledgements are

coming from the satellite in case of Satellite Dev Kit, whereas it is a server

acknowledgement in case of Wi-Fi Dev Kit.

6.6.1 RECEIVING NOTIFICATION

DLN hardware pin notification

Satellite TM payload acknowledgements as well as future incoming telecommands

(with corresponding service level will be in service in 2021) are notified on the DLN pin of

the Development Kit. For this precursor mission, DLN only indicates the presence of

readable values in the form of a satellite acknowledgement. The pin will go low only once

all information is read and cleared.

When DLN pin high occurs, the asset may use a DLN_RR command to read the Event

Register (see DLN_RR and DLN_RA descriptions hereafter). A second method is to

periodically poll that same register with again a new DLN_RR command.

DLN_RR command

Message

structure

Start ID Length (Bytes) Parameters Checksum

0x7F DLN_RR=0x65 0x0000 none LSB MSB

DLN_RA notification

Message

structure

Start ID Length (Bytes) Parameters Checksum

0x7F DLN_RA=0xE5 0x0001 See below LSB MSB

Parameters:

Byte

offset

Format Name Description

0 Uint8 Event

register

Represents the type of event(s) available for reading

Event register value Bitfield:

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 SAK

• SAK: Satellite acknowledgement

• Other bits are reserved for future use.

Example:

An asset can read the type of Downlink notification using DLN_RR command:

Start Message ID Length CRC

0x7F 0x65 0x0000 0x62C0

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 26 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

The Development Kit will answer using a DLN_RA notification, e.g. here showing both

SAK type is available:

Start Message ID Length Parameters CRC

0x7F 0xE5 0x0001 0x01 0x76CD

Following this DLN_RA notification, the actual data corresponding to the notification

(i.e. TM data acknowledgement TM Counter) can be read, see next.

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 27 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

6.7 READING SATELLITE ACKNOWLEDGEMENT

Upon DLN_RA reception, with Event register bit 0=1, the asset can now read the TM

counter, which the notification refers to; this is done using the following command:

Message

structure

Start ID Length (Bytes) Parameters Checksum

0x7F SAK_RR=0x45 0x0000 none LSB MSB

In response to this command, a SAK_RA response is immediately transmitted by the

Development Kit. The asset can then confirm the proper reception of the TM data Satellite

Acknowledgement, using a SAK_CR confirmation. If no satellite acknowledgement is

available, the Development Kit will respond to the SAK_RR with a NO_ACK error.

SAK_RA is defined as follows:

Message

structure

Start ID Length (Bytes) Parameters Checksum

0x7F SAK_RA=0xC5 0x0002 See below LSB MSB

Parameters:

Byte

offset

Format Name Description

0 Uint16 TM Counter Satellite Acknowledgment TM payload identifier

which was originally provided by the asset

The SAK_CR confirmation as follows:

Message

structure

Start ID Length (Bytes) Parameters Checksum

0x7F SAK_CR=0x46 0x0000 none LSB MSB

 Note that if a SAK_CR is sent multiple times in a row to the terminal or that a SAK_RR

was not first sent, the terminal will respond with a NO_CLEAR error.

After clearing a satellite acknowledgment, sending the SAK_RR command will return the

next available satellite acknowledgement.

When clearing a Satellite Acknowledgement with this message, the Development Kit will

free the corresponding memory and erase the oldest Satellite Acknowledgement

information.

The SAK_CA acknowledgment is as follows:

Message

structure

Start ID Length (Bytes) Parameters Checksum

0x7F SAK_CA=0xC6 0x0000 none LSB MSB

Example:

Once notified or using polling mode, the asset can read the Satellite Acknowledgment

notification using SAK_RR command:

Start Message ID Length CRC

0x7F 0x45 0x0000 0xE406

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 28 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

The Development Kit will answer using a SAK_RA response, here showing that TM with

identifier 0x0001 has been sent to the spacecraft:

Start Message ID Length Parameters CRC

0x7F 0xC5 0x0002 0x01 0x00 0x4039

The asset may check data consistency with the CRC information and then confirm with a

SAK_CR notification:

Start Message ID Length CRC

0x7F 0x46 0x0000 0xBD56

To which the Terminal will answer (SAK_CA):

Start Message ID Length CRC

0x7F 0xC6 0x0000 0x860C

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 29 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

7 ANNEX A: CRC

The CRC-16-CCITT is defined by the following polynomial: 𝑥16 + 𝑥12 + 𝑥5 + 1 (0x1021)

The syndrome is initialized to all ones (0xFFFF) at the beginning.

It is the same CRC polynomial and size as used in various protocols such as Bluetooth,

X.25 or CCSDS stack.

7.1 SOFTWARE IMPLEMENTATION

The following C-language code describes the software routine to implement the CRC

encoder. To implement the CRC decoder, the same routines can be used: data and the

syndrome are encoded, and the resulting syndrome should be equal to zero if no error is

present.

Functions applicable to generate the CRC placed at the end of a packet:

• Crc function calculates the CRC for one byte in serial fashion and returns the value

of the calculated CRC checksum.

• Crc_opt function can be used instead of the Crc function given above. The

Crc_opt function generates the CRC for one byte and returns the value of the new

syndrome. This function is approximately 10 times faster than the non-optimized

Crc function.

• InitLtbl function initiates the look-up table used by Crc_opt.

unsigned int Crc(Data, Syndrome)
unsigned char Data; /* Byte to be encoded */
unsigned Syndrome; /* Original CRC syndrome */
{
 int i;
 for (i = 0; i<8; i++) {
 if ((Data & 0x80) ^ ((Syndrome & 0x8000) >> 8)) {
 Syndrome = ((Syndrome << 1) ^ 0x1021) & 0xFFFF;
 }
 else {
 Syndrome = (Syndrome << 1) & 0xFFFF;
 }
 Data = Data << 1;
}
 return (Syndrome);
 }

unsigned int Crc_opt(D, Chk, table)
unsigned char D; /* Byte to be encoded */
 unsigned int Chk; /* Syndrome */
 unsigned int table[]; /* Look-up table */

 {
 return (((Chk << 8) & 0xFF00) ^ table[(((Chk >> 8) ^ D) & 0x00FF)]);
 }

void InitLtbl(table)

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 30 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

 unsigned int table[];
 {
 unsigned int i, tmp;
 for (i = 0; i<256; i++) {
 tmp = 0;
 if ((i & 1) != 0) tmp = tmp ^ 0x1021;
 if ((i & 2) != 0) tmp = tmp ^ 0x2042;
 if ((i & 4) != 0) tmp = tmp ^ 0x4084;
 if ((i & 8) != 0) tmp = tmp ^ 0x8108;
 if ((i & 16) != 0) tmp = tmp ^ 0x1231;
 if ((i & 32) != 0) tmp = tmp ^ 0x2462;
 if ((i & 64) != 0) tmp = tmp ^ 0x48C4;
 if ((i & 128) != 0) tmp = tmp ^ 0x9188;
 table[i] = tmp;
 }
 }

/* Simple program to test both CRC generating functions */
void main()
 {
 unsigned int Chk; /* CRC syndrome */
 unsigned int LTbl[256]; /* Look-up table */
 unsigned char indata[32]; /* Data to be encoded */
 int j;
 indata[0] = 0x31; indata[1] = 0x23; indata[2] = 0x48; indata[3] = 0x07;
 indata[4] = 0x00; indata[5] = 0xEC; indata[6] = 0xD0; indata[7] = 0x37;
 Chk = 0xFFFF; /* Reset syndrome to all ones */
 for (j = 0; j<8; j++) {
 Chk = Crc(indata[j], Chk); /* Unoptimized CRC */
 }
 printf(” CRC = %x(should be 0)\n”, Chk);
 InitLtbl(LTbl); /* Initiate look-up table */
 Chk = 0xFFFF; /* Reset syndrome to all ones */
 for (j = 0; j<8; j++) {
 Chk = Crc_opt(indata[j], Chk, LTbl); /* Optimized CRC */
 }
 printf(” CRC = %x(should be 0)\n”, Chk);
 }

A different implementation could be the following:
// Computes the CRC-CCITT
// data The buffer containing the data bytes.
// dataLength The number of bytes to read from the buffer.
// init Initial syndrome value.
uint16_t CRC_Compute(const uint8_t* data, uint16_t dataLength, uint16_t init)
{
 uint16_t x;
 uint16_t crc = init;

 while (dataLength--)
 {
 x = crc >> 8 ^ *data++;
 x ^= x >> 4;
 crc = (crc << 8) ^ (x << 12) ^ (x << 5) ^ (x);
 }
 return crc;
}

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 31 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

7.2 VERIFICATION OF COMPLIANCE

The binary sequences defined in this subclause (see table below) are provided to the end

user as samples for early testing, so that they may verify the correctness of their CRC

error-detection implementation. All data is given in hexadecimal notation. For a given field

(data or CRC) the leftmost hexadecimal character contains the most significant bit.

Data CRC

00 00 1D 0F

00 00 00 CC 9C

AB CD EF 01 04 A2

14 56 8 9A 00 01 7F D5

 Astronode Pilot Asset API User Guide

This is a confidential document

Last updated: 8 December 2020

Page: 32 of 32

ASTROCAST SA, Chemin des Ramiers 20, 1022 Chavannes-près-Renens, SWITZERLAND

8 DISCLAIMER

The information contained within this document (the "Astronode Pilot Asset API User

Manual”) is furnished for informational purposes only. Even though Astrocast SA does its

best to deliver this Astronode Pilot Asset API User Manual with correct and complete

information, we cannot warrant that this document is free from any errors, inaccuracies,

or omissions. We reserve the right to make additions, deletions, or modification to the

content of the Astronode Pilot Asset API User Manual at any time.

Please make sure that you carefully read this information before using our products and

ask us for support in case of any questions or doubts. Astrocast SA shall not be liable for

any damages, losses, costs, or expenses, direct, indirect, or incidental, consequential, or

special, arising out of or related to the use of this document or the incorrect use or

operation of our products.

